MAT 540 Week 9 Homework Chapter 5
To retain customers and acquire new ones, Rowntown must maintain a high customer service level. To do so, it has determined the minimum number of drivers it needs working during every 4hour time segment 10 from midnight to 4:00 A.M. 12 from 4:00 to 8:00 A.M. 20 from 8:00 A.M. to noon, 25 from noon to 4:00 P.M., 32 from 4:00 to 8:00 P.M., and 18 from 8:00 P.M. to midnight.
a. Formulate and solve an integer programming model to help Rowntown Cab schedule its drivers.
b. If Rowntown has a maximum of only 15 drivers who will work the late shift from midnight to 8:00 A.M., reformulate the model to reflect this complication and solve it
c. All the drivers like to work the day shift from 8:00 A.M. to 4:00 P.M., so the company has decided to limit the number of drivers who work this 8hour shift to 20. Reformulate the model in (b) to reflect this restriction and solve it.
2. Juan Hernandez, a Cuban athlete who visits the United States and Europe frequently, is allowed to return with a limited number of consumer items not generally available in Cuba. The items, which are carried in a duffel bag, cannot exceed a weight of 5 pounds. Once Juan is in Cuba, he sells the items at highly inflated prices. The weight and profit (in U.S. dollars) of each item are as follows:

Item 
Weight (lb.) 
Profit 





Denim jeans 
2 
$90 

CD players 
3 
150 

Compact discs 
1 
30 




Juan wants to determine the combination of items he should pack in his duffel bag to maximize his profit. This problem is an example of a type of integer programming problem known as a “knapsack” problem. Formulate and solve the problem.
3. The Texas Consolidated Electronics Company is contemplating a research and development program encompassing eight research projects. The company is constrained from embarking on all projects by the number of available management scientists (40) and the budget available for R&D projects ($300,000). Further, if project 2 is selected, project 5 must also be selected (but not vice versa). Following are the resources requirement and the estimated profit for each project.
Project 
Expense 
Management 
Estimated Profit 

($1,000s) 
Scientists required 
(1,000,000s) 




1 
50 
6 
0.30 




2 
105 
8 
0.85 




3 
56 
9 
0.20 




4 
45 
3 
0.15 




5 
90 
7 
0.50 




6 
80 
5 
0.45 




7 
78 
8 
0.55 




8 
60 
5 
0.40 




Formulate the integer programming model for this problem and solve it using the computer.
4. Corsouth Mortgage Associates is a large home mortgage firm in the southeast. It has a poll of permanent and temporary computer operators who process mortgage accounts, including posting payments and updating escrow accounts for insurance and taxes. A permanent operator can process 220 accounts per day, and a temporary operator can process 140 accounts per day. On average, the firm must process and update at least 6,300 accounts daily. The company has 32 computer
workstations available. Permanent and temporary operators work 8 hours per day. A permanent operator averages about 0.4 error per day, whereas a temporary operator averages 0.9 error per day. The company wants to limit errors to 15 per day. A permanent operator is paid $120 per day wheras a temporary operator is paid $75 per day. Corsouth wants to determine the number of permanent and temporary operators it needs to minimize cost. Formulate, and solve an integer programming model for this problem and compare this solution to the noninteger solution.
5. Globex Investment Capital Corporation owns six companies that have the following estimated returns (in millions of dollars) if sold in one of the next 3 years:


Year Sold 



(estimated returns, $1,000,000s) 





Company 
1 
2 
3 




1 
$14 
$18 
$23 
2 
9 
11 
15 
3 
18 
23 
27 
4 
16 
21 
25 
5 
12 
16 
22 
6 
21 
23 
28 




To generate operating funds, the company must sell at least $20 million worth of assets in year 1, $25 million in year 2, and $35 million in year 3. Globex wants to develop a plan for selling these companies during the next 3 years to maximize return.
Formulate an integer programming model for this problem and solve it by using the computer.